xtpxlib-xdoc

An xtpxlib component for generating documentation

Erik Siegel - Xatapult Content Engineering
2024-12-12






xtpxlib-xdoc - An xtpxlib component for generating documentation 1/26

Table of Contents

0 Documentation generation with XtpxXIb-XdOcC ..o 2
1 DIESCIPHOMN ..o 3
1.1 The mMain tOOIChAIN ..o 3
2 INSTIUCHONS .ooovoviiviitiictcte ettt bt bbb e bR bR bR bbbt a e a et es 5
2.1 GEttNG StALTEA ..ottt 5
2.2 VAHAAHON .ttt
2.3 Parameter substitution
2.4 XAOC tANSLOIINS weuiuiiiiiieciciiciicic et
3 XdOC trANSTOLINS ..ot 7
3.1 Running an xdoc transform ...
3.2 Built-in xdoc transformations (XProc 3.0) .....cccceeeunnee.
3.2.1 XProc (3.0) pipeline: code-docgen-dir.Xpl ......ccocviiiiiiiiciniininiiiii s
3.2.2 XProc (3.0) pipeline: code-docgen.xpl ................ s 8
3.2.3 XProc (3.0) pipeline: include-docbook.xpl ......... v 9
3.2.4 XProc (3.0) pipeline: xml-description.xpl ........... SRR 9
3.3 Built-in xdoc transformations (XProc 1.0) ..c..ccccecnieninieniieieeierseeseneeiensesesesteessesesessesesesens 9
3.3.1 XProc (1.0) pipeline: code-docgen-dir.Xpl ......ccocviiiiiiiiciniininiiii s 9
3.3.2 XProc (1.0) pipeline: code-docgen.Xpl ..o 10
3.3.3 XProc (1.0) pipeline: include-docbook.Xpl ... 11
3.3.4 XProc (1.0) pipeline: xml-description.Xpl ..o 1
3.4 Writing your own xdoc transfOrmations ... 11
4 XPLOC 3.0 SUPPOLL ..ottt ettt ettt bbbttt b st esnasens
4.1 XProc (3.0) pipeline: docbook-to-pdfxpl ...
4.2 XProc (3.0) pipeline: docbook-to-xhtmLXP ...
4.3 XProc (3.0) pipeline: Xdoc-to-docbOOK.XPl ...
4.4 XProc (3.0) pipeline: XAOC-to-PAEXPL ..o
4.5 XProc (3.0) pipeline: Xdoc-to-XhtmLXPL ..o
4.6 XProc (3.0) library: xtpxlib-xdoc.MOA.XP ..covuiiiiiiiiiiiiii s
4.6.1 Step: xdoc:markdown-to-docbook
5 XPIOC 1.0 SUPPOLT ..ttt st
5.1 XProc (1.0) pipeline: dOCbOOK-tO-PALXPL w..uvuvuciuieieiiiiiiiiciiiiie e
5.2 XProc (1.0) pipeline: docboOk-tO-XNMLXPL ..cuvuuivriviiiiiciiiiiiiieii e sseees
5.3 XProc (1.0) pipeline: xdoc-to-doCbOOK.XPl ..o
5.4 XProc (1.0) pipeline: XAOC-tO-PALXPL c.euiviiiiiiiiiiiiiii e
5.5 XProc (1.0) pipeline: xdoc-to-xhtml.xpl ......
5.6 XProc (1.0) library: xtpxlib-xdoc.mod.xpl ..........
5.6.1 Step: xdoc:markdown-to-docbook
6 DOCBOOK QIQlECT ..ot 22
0.1 Supported rOOt CIEMENLS ...cuuivuiuieiiirriiiiiiie s ss s s 22
6.2 Document information ............ vt 22
6.3 Chapter/Section structute ....... e 22
6.4 Block constructions .................. e 22
6.5 Inline elements ......ccoocoeuviccrvevecrvuniecnne .24
6.6 Other CONSLIUCES ..ovecvecvrricriinrnene ....26

6.7 Fixed-width column MEChANISIY wiuiiviviiiieiiieiietiectceeee ettt st se st se s ere st re s eaenserens 26



xtpxlib-xdoc - An xtpxlib component for generating documentation 2/26

0 Documentation generation with xtpxlib-xdoc

Yipxlib

xtpxlib library - component xtpxlib-xdoc - v3.0 (2024-12-12)
Xatapult Content Engineering - http://www.xatapult.com - +31 6 53260792

Erik Siegel - etik@xatapult.com

xtpxlib-xdoc is part of the xtpx1ib library. xtpx1ib contains software for processing XML, using
languages like XSLT and XProc. It consists of several separate components, all named xtpxlib-*.
Everything can be found on GitHub (https://github.com/xatapult).

The xtpxlib-xdoc component contains an XProc (1.0 and 3.0) based DocBook publication toolchain.
e  Starting point is some narrative written in DocBook, with the following extensions:
*  Parameter references that are expanded (for dates, times, phrases, names, etc.)

*  Special elements that trigger conversions. These conversions can insert generated DocBook into the
source. For instance complex tables, documentation, etc.

e The resulting "pure" DocBook can be used for further processing.
*  The component contains specific pipelines for converting the DocBook to PDF and XHTML

Installation and usage information can be found on xtpx1ib's main website https://www.xtpxlib.org.

Technical information:

Component documentation: https://xdoc.xtpxlib.otg

License: GNU GENERAL PUBLIC LICENSE - Version 3, 29 June 2007

Git URL: git@github.com:xatapult/xtpxlib-xdoc.git

Git site: https://github.com/xatapult/xtpxlib-xdoc

This component depends on:

*  xtpxlib-container (Support for XML containers (multiple files wrapped into one))

e xtpxlib-common (Common component: Shared libraries and IDE support)

Release information:

v3.0 - 2024-12-12 (current)
Deprecation of XProc 1.0. Several fixes.

v2.0 - 2023-07-19
Added XProc 3.0 support.

v1.1.2 - 2020-11-30
Various small changes and fixes

v1.1.1 - 2020-10-15
Added id-suffix option to generating code documentation.

When XProc options are declared twice (using @use-when), only the first is used.

v1.1 - 2020-05-01
Updated the DocBook to PDF conversion (added footnotes, callouts, nested tables, etc.).

(Abbreviated. Full release information in README . md)


http://www.xatapult.com
mailto:erik@xatapult.com
https://github.com/xatapult
https://www.xtpxlib.org
https://xdoc.xtpxlib.org
https://github.com/xatapult/xtpxlib-xdoc
https://container.xtpxlib.org
https://common.xtpxlib.org

1.1

xtpxlib-xdoc - An xtpxlib component for generating documentation 3/26

Description

Have you ever struggled with producing technical documentation for your software, content model or
anything else? Big chance that you have had to deal with repeating constructs: Explaining XML elements
and attributes, documenting functions, procedures and variables, etc. The same constructs over and over
again, usually with complex tables, little pieces of program listings or other things that are difficult to keep
consistent and maintain. The xtpx1lib component xtpxlib-xdoc tries to alleviate this problem
xtpxlib-xdoc's starting point is zarrative documentation written in DocBook 5.1. On top of this it adds a
number of extensions. This source format, DocBook + extensions, is called xdoc.

The xtpxlib-xdoc XProc pipelines turn the xdoc format into "pure" DocBook. From there it can be
converted into PDF or HTML using standard DocBook technology. The xtpxlib-xdoc component itself
also contains conversions into PDF (through XSL-FO) and HTML. These work out of the box but, especially
the PDF one, use a layout that might not be what you want or need. But since the source is available you can
tweak it to your heart's desire.

xtpxlib-xdoc currently allows two types of extensions on top of DocBook:

Parameter expansion
Parameters, coming from some parameter source, are expanded. This useful for, for instance, status
information, dates/times, standard words and phrases, etc. This uses the parameter mechanism as
introduced in xtpxlib's common component.

Transforms
The so-called xdoc transforms convert something, usually some piece of XML, into DocBook
and insert the result back in the main document. This is extremely useful for consistent and repeating
documentation generation.

Curious to see it in action. Want to know more? Checkout the “Instructions” on page 5 section.

The main toolchain

The following figure illustrates xtpxlib-xdoc's main toolchain:

xipxlib-xdoc custom
transforms transforms

—o-

Process xdoc
extensions

Convert to I

target format I

Source
documents
in xdoc format

"Pure”
DocBook
version

o/\

Expand
parameter
references

Resolve
Xinclude-s

Target format

version

Add generated parameters:
- DATETIME, DATE, TIME
-HREF-SQURCE

Parameter
document

Figure 1-1 - xtpxlib-xdoc's main toolchain

1. The xtpxlib-xdoc module uses a format called xdoc as its source format. The basis of xdoc is
DocBook 5.1. On top of this xdoc adds extensions for parameter handling and code/markup/text
generation.

2. 'The first processing step in the toolchain performs basic XInclude processing. This means that you can
build your document from smaller parts, for instance one document per chapter.

Another application of the XInclude processing is to get the data in for the xdoc transform processing
in step 5.

3. The next step is to expand any parameter references in the source document. A parameter is a name/
value pair. To expand its value in the document use either ${name} or {$name} (both mean the same).
Parameters are expanded both in text and in attribute values.


https://docbook.org/
https://common.xtpxlib.org/1_Description.html#parameters-explanation
https://common.xtpxlib.org
https://docbook.org/

xtpxlib-xdoc - An xtpxlib component for generating documentation 4/26

4, Parameters come from two sources:

*  An (optional) parameter document. This document must use the format as handled by the parameter
mechanism of xtpx1lib's common component.

*  The toolchain automatically creates some parameters.

See here for details and usage instructions

5. Next the so-called xdoc #ransforms are processed. A transform consists of an <xdoc: transform>

element (the namespace prefix xdoc: must be bound to http://www.xtpxlib.nl/ns/xdoc). An

XSLT stylesheet or XProc (1.0) pipeline is triggered that gets this <xdoc: transform> element (with all

attributes and child elements) as input and results in the injection of generated DocBook.

6. The transformations triggered by <xdoc: transform> can come from two sources:

*  Transformations that are built into the xtpxlib-xdoc component. These are generic
transformations for, for instance, documenting XML structures or generating code documentation.
An overview of these can be found in “Built-in xdoc transformations (XProc 1.0)” on page 9.

*  Your own transformations. Guidelines on how to write these can found in “Writing your own xdoc
transformations” on page 11.

The result of the toolchain so-far is a document in "pure" DocBook 5.1.

From this you can transform to some target format.

The xtpxlib-xdoc component contains transformations to both PDF and HTML (see the docbook-

to-pdf and docbook-to-xhtml pipelines). These transformations can only handle a subset of the full

DocBook standard. The result will be rather specific for the xtpxlib-xdoc component and might not

be directly usable for other use-cases. To amend this you can copy-and-adapt these transformations or

use some other DocBook conversion.

9. Tinally, the result of all this is a document in the desired target format.


https://common.xtpxlib.org/1_Description.html#parameters-explanation
https://common.xtpxlib.org/1_Description.html#parameters-explanation
https://common.xtpxlib.org
https://docbook.org/

2.1

2.2

2.3

xtpxlib-xdoc - An xtpxlib component for generating documentation 5/26

Instructions

Getting started

The template/ sub-directory of xtpxlib-xdoc contains several template files that can be used a starting

point. These templates also declare the necessary namespace http://www.xtpxlib.nl/ns/xdoc, bound

to the prefix xdoc:.

Use one of the XProc processing pipelines to process an xdoc source into DocBook, PDF or HTML. For
instance xdoc-to-docbook will turn your xdoc source into "pure" DocBook.

Validation

The xtpxlib-xdoc component contains an enhanced DocBook NVDL schema, xsd/docbook/

docbook.nvdl, that allows the xdoc extensions.

The template files in the template/ sub-directory reference this schema. Don't forget to change this
reference and keep it valid if you copy such a template to a directory of your own!

Parameter substitution

The xdoc framework performs parameter substitution. $ {parameter-name} and {$parameter-
name} (both mean the same) are substituted with the parametet's value (if it exists). Substitution takes place
in attribute and text values. To stop such a ${...} or {$...} construction from being substituted, doxble the

opening curly brace ({ {).

The xdoc toolchain automatically creates a number of parameters. Here is a dump of all current parameters.

The uppet-case ones are generated, the lower-case ones come from the component's information file

(‘component-info.xml’).

Parameter
DATE
DATETIME

Value ‘
2024-12-12
15:22:46

HREF-SOURCE

TIME

C:/Data/Erik/work/xatapult/xtpxlib-
xdoc/doc/source/xtpxlib-xdoc-chapter-
instructions.xml

15:22:46

active-components

author-email-address

xtpxlib-common xtpxlib-container xtpxlib-
xoffice xtpxlib-xdoc

erik@xatapult.com

author-name

component-current-release-date

Erik Siegel
2024-12-12

component-current-release-version

component-display-name

3.0
xtpxlib-xdoc

component-documentation-uri

component-git-site-uri

https://xdoc.xtpxlib.org
https://github.com/xatapult/xtpxlib-xdoc

component-git-uri

component-name

git@github.com:xatapult/xtpxlib-xdoc.git
xtpxlib-xdoc

component-title

library-name

DocBook publication toolchain

Xatapult XML Library

license

owner—-company-git-site-uri

GNU GENERAL PUBLIC LICENSE - Version 3, 29
June 2007

https://github.com/xatapult

owner-company-name

Xatapult Content Engineering

owner-company-phone

+31 6 53260792

owner-company-website

http://www.xatapult.com

Table 2-1 - Parameters



2.4

xtpxlib-xdoc - An xtpxlib component for generating documentation 6/26

To specify your own parameters, create an XML document that looks like this:

<parameters>
<parameter name="my-parameter">
<value>Some value..</value>
</parameter>
</parameters>
The parameter XML format has several additional features, like filtering and grouping values. It's also
namespace independent and might be embedded in a bigger document. See the format's description for more
information.
A reference to such a parameter document must be passed as option href-parameters to one of the
processing XProc pipelines.

To see which parameters are available in your xdoc pipelines, add the following to your document (this
instruction was used to generate the parameter table above):

<xdoc:dump-parameters type="table"/>

You can also specify type="comment". As the name implies, the parameters will now be added as an XML
comment, so you'll have to dive into the produced DocBook to see them.

xdoc transforms

An xdoc transform is an XSLT stylesheet or XProc pipeline that is triggered from your source document and
inserts generated DocBook contents. There are several of these transforms built into the xtpxlib-xdoc
component but its also easy to write one of your own. Detailed information can be found here.

As an example: xtpxlib-xdoc contains transforms to extract documentation from XML documents

and programs. Now assume you want to insert the documentation of the xdoc-to-docbook pipeline
somewhere in a document of your own. You could do this by adding a reference to the xdoc-to-docbook
transform to your xdoc source:

<xdoc:transform href="$xdoc/code-docgen.xpl" filecomponents="2">
<xi:include href="../../xpl/xdoc-to-docbook.xpl"/>
</xdoc:transform>

The result will be:

XProc (1.0) pipeline: xdoc-to-docbook . xpl

File: xpl/xdoc-to-docbook.xpl
Type: xdoc:xdoc-to-docbook

Pipeline that transforms a DocBook source containing xdoc extensions into "pure" DocBook format.

Type |Primary? |Description

source in yes The DocBook source with xdoc extensions

result out yes The resulting DocBook

Rq? |Default Description

alttarget () The target for applying alternate settings.

href-parameters O Optional reference to a document with parameter settings. See here for
details.

parameter-filters () Optional filter settings for processing the parameters. Format:
name=value | name=value]...

Historically (from the XProc-1.0-only days), "xdoc™ transformations are in a subdirectory called “transforms".
To allow smooth migration from XProc 1.0 to XProc 3.0, the XProc 3.0 code that finds the transformations
automatically changes any path component */transforms/" into */transforms3/". This allows an “xdoc’
soutce to (still) reference the older XProc 1.0 transformations (in “transforms/") but auto magically get the
XProc 3.0 ones (in “transforms3/").


https://common.xtpxlib.org/1_Description.html#parameters-explanation
https://common.xtpxlib.org/1_Description.html#parameters-explanation

3.1

3.2

3.2.1

xtpxlib-xdoc - An xtpxlib component for generating documentation 71726

xdoc transforms

An xdoc transform is an XSLT stylesheet or XProc (1.0) pipeline that is triggered from your source
document and inserts generated DocBook contents. There are several of these transforms built into the
xtpxlib-xdoc component but its also easy to write one of your own.

Running an xdoc transform

The <xdoc: transform>extension element runs an xdoc transformation (either XProc (1.0) or XSLT (2.0
or 3.0)). It is completely replaced by the outcome of the transformation.

<xdoc:transform href = xs:anyURI
(any) ? >
<!-- (Optional) XML to transform and/
or an <xi:include> element to load this from an external source. -->
</xdoc:transform>

Attribute  # Type Description

href 1 |xs:anyURI Reference to the actual transformation. Relative names are resolved against
the location of the source document.

This file's extension determines whether an XProc 1.0 (extension: .xpl)
or an XSLT (extension: .xs1) is done.

A value that starts with $xdoc is assumed to be an xtpx1lib-xdoc built-
in transformation (e.g. href="$xdoc/code-docgen.xpl"). See also
“Built-in xdoc transformations (XProc 1.0)” on page 9.

(any) ? Often transformations specify additional attributes on the
<xdoc:transform> element to parametrize their functionality. Any
additional attribute is allowed here.

Built-in xdoc transformations (XProc 3.0)

The xtpxlib-xdoc has several transforms built in. You also reference these by prefixing their name
with $xdoc, for instance $xdoc/code-docgen. xpl. If you use the XProc 3.0 xdoc” pipelines, these
transforms are automatically used.

Module/Pipeline Description

code-docgen-dir.xpl Runs the $xdoc/code-docgen. xpl transform over multiple files in a directory.

code-docgen.xpl Takes an XML document (XSL, XSD, XProc, ordinary XML) and generates
documentation out of it.

include-docbook.xpl  |Takes an XML document and unwraps the root element from it. It then copies all the
children to the output, with the exception of any db: info elements.
xml-description.xpl Takes a document that deserzbes an XML document, using special markup for this, and
turns this into DocBook.

Table 3-2 - Modnle overview

XProc (3.0) pipeline: code-docgen-dir.xpl

File: transforms3/code-docgen-dir.xpl
Type: xdoc: code-docgen-dir
Runs the $xdoc/code-docgen. xpl transform over multiple files in a directory.

Typical usage (within an xdoc source document):



3.2.2

xtpxlib-xdoc - An xtpxlib component for generating documentation 8/26

<xdoc:transform href="$xdoc/code-docgen-dir.xpl"
dir=".."
depth=".."
filter="."
toc-only=".."
id-suffix=".." >

*  @dir: Directory to process
*  (@depth: (integer, default -1) The depth in traversing the directory tree.
*  Whenle 0, @dir and all its subdirectories are processed.
*  Wheneq 1, only @dir is processed.
*  When gt 1, the sub-directories up to this depth are processed.
* Q@filter: optional regexp filter (e.g. get only XProc files with filter="\.xpl$")
* Qtoc-only: (boolean, default false) Whether to produce a ToC table only.

* @id-suffix: Optional suffix for creating an id based on the filename.

source in yes The triggering xdoc: transform element.

result out yes The resulting DocBook output.

XProc (3.0) pipeline: code-docgen.xpl

File: transforms3/code-docgen.xpl

Type: xdoc: code-docgen

Takes an XML document (XSL, XSD, XProc, ordinary XML) and generates documentation out of it.
Typical usage (within an xdoc source document):

<xdoc:transform href="$xdoc/code-docgen.xpl”
filecomponents=".."
header-level=".."
add-table-titles=".."
sublevels=".."
id="."
id-suffix=".." >
<xi:include href="path/to/document/to/generate/documentation/for"/>
</xdoc:transform>

* (@filecomponents: (integer, default 0)Determines the display of the filename:
*  When It 0, no filename is displayed
*  When eq 0, the full filename (with full path) is displayed

*  When gt 0, this number of filename components is displayed. So 1 means filename only, 2 means
filename and direct foldername, etc.

* Qheader-level: (integer, default 0)Determines what kind of DocBook section is created:

*  When le 0, no separate section is created, all titles will be output as bridgehead elements.

*  Otherwise a title with this level is created (e.g. header-level="1" means a sectl element).
* Qadd-table-titles: (boolean, default false) Whether to add titles to generated tables.

* @sublevels: (boolean, default true) If true only the main section will be a "real" section. All sublevels
will become bridgeheads.

*  @id: Optional identifier of this section. If absent the id will become the document's filename, optionally
suffixed with @id-suffix.

* Qid-suffix: Optional suffix for creating an id based on the filename.

If the format to document has means to add documentation of itself (like XProc (p:documentation) or
XML Schema (xs:annotation)), this is used. If there is no such thing (like for XSLT and straight XML),
comments starting with a tilde (~) are used.

All descriptions and documentation sections can contain simple Markdown.
The following formats are supported
* XML documents: only the header comment is used.

e  XSLT (2.0 and 3.0) stylesheets: document all exporzed parameters, variables, functions and named
templates. Something is supposed to be for export if its #0f in the no or local namespace.

e XProc pipelines and libraries

e XML Schemas: Uses the global annotation and lists the global elements using their annotations.



3.2.3

3.24

3.3

3.3.1

xtpxlib-xdoc - An xtpxlib component for generating documentation 9/26

Primary? |Description

Type

source in yes The document to generate documentation for, wrapped in an xdoc: transform
element.
result out yes The resulting DocBook output.

XProc (3.0) pipeline: include-docbook.xpl

File: transforms3/include-docbook.xpl

Takes an XML document and unwraps the root element from it. It then copies all the children to the output,
with the exception of any db: info elements.

It is the responsibility of the author to make sure that everything that results is in the DocBook (http://
docbook.org/ns/docbook) namespace!

Typical usage (within an xdoc source document):

<xdoc:transform href="$xdoc/include-docbook.xpl>
<xi:include href="path/to/xml/to/include.xml"/>
</xdoc:transform>

‘T}'pc ‘Primary? Description

source in yes The document containing the parts to include, wrapped in an xdoc: transform
clement.
result out yes The resulting DocBook output.

XProc (3.0) pipeline: xml-description.xpl

File: transforms3/xml-description.xpl

Takes a document that describes an XML document, using special markup for this, and turns this into
DocBook.

A schema for this markup format can be found in xsd/element-description.xml.

Typical usage (within an xdoc source document):

<xdoc:transform href="$xdoc/xml-description.xpl>
<xi:include href="path/to/xml/description.xml"/>
</xdoc:transform>

Description

source in yes The document containing the XML description, wrapped in an xdoc: transform
element.

result out yes The resulting DocBook output.

Built-in xdoc transformations (XProc 1.0)

WARNING: XProc 1.0 support is considered deprecated and will be removed in the near future!

The xtpxlib-xdoc has several transforms built in that use XProc 1.0. You can easily reference these by
prefixing their name with $xdoc, for instance $xdoc/code-docgen. xpl. If you use the XProc 1.0 "xdoc’
pipelines, these transforms are automatically used.

Module/Pipeline

Description

code-docgen-dir.xpl

Runs the $xdoc/code-docgen.xpl transform over multiple files in a directory.

code-docgen.xpl

Takes an XML document (XSL, XSD, XProc, ordinary XML) and generates
documentation out of it.

include-docbook.xpl

Takes an XML document and unwraps the root element from it. It then copies all the
children to the output, with the exception of any db:info elements.

xml-description.xpl

Takes a document that deseribes an XML document, using special markup for this, and
turns this into DocBook.

Table 3-7 - Module overview

XProc (1.0) pipeline: code-docgen-dir.xpl

File: transforms/code-docgen-dir.xpl

Runs the $xdoc/code-docgen. xpl transform over multiple files in a directory.




3.3.2

xtpxlib-xdoc - An xtpxlib component for generating documentation 10/ 26

Typical usage (within an xdoc source document):

<xdoc:transform href="$xdoc/code-docgen-dir.xpl"
dir="."
depth=".."
filter="."
toc-only="."
id-suffix=".." >

*  @dir: Directory to process
* Q@depth: (integer, default -1) The depth in traversing the directory tree.
*  Whenle 0, @dir and all its subdirectories are processed.
*  Wheneq 1, only @dir is processed.
*  When gt 1, the sub-directories up to this depth are processed.
* (@filter: optional regexp filter (e.g. get only XProc files with filter="\.xpl$")
* Qtoc-only: (boolean, default false) Whether to produce a ToC table only.
*  @id-suffix: Optional suffix for creating an id based on the filename.

All (other) attributes are passed to code-docgen. xpl.

Description

source in yes The triggering xdoc: transform element.

result out yes The resulting DocBook output.

XProc (1.0) pipeline: code-docgen.xpl

File: transforms/code-docgen.xpl

Type: xdoc: code-docgen

Takes an XML document (XSL, XSD, XProc, ordinary XML) and generates documentation out of it.
Typical usage (within an xdoc source document):

<xdoc:transform href="$xdoc/code-docgen.xpl”
filecomponents=".."
header-level=".."
add-table-titles=".."
sublevels=".."
id=".."
id-suffix=".." >
<xi:include href="path/to/document/to/generate/documentation/for"/>
</xdoc:transform>

* (@filecomponents: (integer, default 0)Determines the display of the filename:
*  When It 0, no filename is displayed
*  When eq 0, the full filename (with full path) is displayed

*  When gt 0, this number of filename components is displayed. So 1 means filename only, 2 means
filename and direct foldername, etc.

* Qheader-level: (integer, default 0)Determines what kind of DocBook section is created:

*  When le 0, no separate section is created, all titles will be output as bridgehead elements.

*  Otherwise a title with this level is created (e.g. header-level="1" means a sectl element).
* Qadd-table-titles: (boolean, default false) Whether to add titles to generated tables.

* @sublevels: (boolean, default true) If true only the main section will be a "real" section. All sublevels
will become bridgeheads.

e  @id: Optional identifier of this section. If absent the id will become the document's filename, optionally
suffixed with @id-suffix.

* Qid-suffix: Optional suffix for creating an id based on the filename.

If the format to document has means to add documentation of itself (like XProc (p:documentation) or
XML Schema (xs:annotation)), this is used. If there is no such thing (like for XSLT and straight XML),
comments starting with a tilde (~) are used.

All descriptions and documentation sections can contain simple Markdown.
The following formats are supported
* XML documents: only the header comment is used.

e XSLT (2.0 and 3.0) stylesheets: document all exporzed parameters, variables, functions and named
templates. Something is supposed to be for export if its #o¢ in the no or local namespace.



333

3.34

3.4

xtpxlib-xdoc - An xtpxlib component for generating documentation

11/26

*  XProc pipelines and libraries

* XML Schemas: Uses the global annotation and lists the global elements using their annotations.

Primary? |Description
source in yes The document to generate documentation for, wrapped in an xdoc: transform
element.
result out yes The resulting DocBook output.

XProc (1.0) pipeline: include-docbook.xpl

File: transforms/include-docbook.xpl

Takes an XML document and unwraps the root element from it. It then copies all the children to the output,
with the exception of any db: info elements.

It is the responsibility of the author to make sure that everything that results is in the DocBook (http://
docbook.org/ns/docbook) namespace!

Typical usage (within an xdoc source document):

<xdoc:transform href="$xdoc/include-docbook.xpl>
<xi:include href="path/to/xml/to/include.xml"/>
</xdoc:transform>

‘T}'pc ‘Primary? Description

source in yes The document containing the parts to include, wrapped in an xdoc: transform
clement.
result out yes The resulting DocBook output.

XProc (1.0) pipeline: xml-description.xpl

File: transforms/xml-description.xpl

Takes a document that describes an XML document, using special markup for this, and turns this into
DocBook.

A schema for this markup format can be found in xsd/element-description.xml.
Typical usage (within an xdoc source document):

<xdoc:transform href="$xdoc/xml-description.xpl>
<xi:include href="path/to/xml/description.xml"/>
</xdoc:transform>

Description

source in yes The document containing the XML description, wrapped in an xdoc: transform
element.
result out yes The resulting DocBook output.

Writing your own xdoc transformations

* To add an xdoc transform of your own you need to write an XSLT stylesheet or an XProc pipeline.

*  Such a stylesheet or transformation gets the *full* <xdoc:transform> element as its input. It can
inspect the <xdoc: transform> root element itself for its attributes.

* The <xdoc:transform> element has an additional attribute xdoc:base-uri-source that holds the
URI of the source document. Useful when resolving other URI s.

*  The output of the stylesheet/pipeline must be the resulting (valid!]) DocBook.

e If the resulting DocBook contains multiple elements you can wrap them all in an <xdoc : GROUP>
element to make the result a single well-formed document. The <xdoc : GROUP> wrapper is removed
later on by the xdoc processing.

*  You must reference your stylesheet or pipeline using <xdoc: transform>'s href attribute.

Here is a simple example of something that is actually quite useful. Tables in DocBook are complex things.

When you to have format the same kind of data over and over again in a table, it becomes very boring and

hard to keep consistent and maintainable. Using xdoc transforms you can automate the data to DocBook

part.

Assume we have, all over the document, weather data, that comes in this source format:



xtpxlib-xdoc - An xtpxlib component for generating documentation 12/26

<weather-data>
<data city="Amsterdam" temp="20"/>
<data city="Stavanger" temp="-5"/>
</weather-data>

You want to show this as tables. The following XSLT stylesheet (called transform-weather-data.xsl)
will do the xdoc transform trick. As its input it gets the weather data wrapped in the <xdoc:transform>
element (see below).

<?xml version="1.0" encoding="UTF-8"?2>

<xsl:stylesheet version="3.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xdoc="http://www.xtpxlib.nl/ns/xdoc"
xmlns="http://docbook.org/ns/docbook">

<xsl:template match="/">
<table>
<title>Example weather data</title>
<tgroup cols="2">
<colspec colwidth="4cm"/>
<colspec/>
<thead>
<row>
<entry>
<para>City</para>
</entry>
<entry>
<para>Temperature (C)</para>
</entry>
</row>
</thead>
<tbody>
<xsl:for-each select="/xdoc:transform/weather-data/data">
<row>
<entry>
<para>
<xsl:value-of select="Qcity"/>
</para>
</entry>
<entry>
<para><xsl:value-of select="@temp"/></para>
</entry>
</row>
</xsl:for-each>
</tbody>
</tgroup>
</table>
</xsl:template>

</xsl:stylesheet>
In your document you add:
<xdoc:transform href="path/to/transform-weather-data.xsl">

<xi:include href="path/to/your/weather/data.xml"/>
</xdoc:transform>

And the result for this example is:

Temperature
Amsterdam 20
Stavanger -5

Table 3-12 - Example weather data



4.1

xtpxlib-xdoc - An xtpxlib component for generating documentation 13/26

XProc 3.0 support

The xtpxlib-xdoc component contains the following XProc 3.0 pipelines:

Module/Pipeline Description

docbook-to-pdf.xpl This turns Docbook (5.1) into a PDF using FOP.

docbook-to-xhtml.xpl  |This turns Docbook (5.1) into XHTML.

xdoc-to-docbook.xpl XProc 3.0 pipeline that transforms a DocBook source containing xdoc extensions
into "pure" DocBook format.

xdoc-to-pdf.xpl Convenience pipeline: Combines the xdoc-to-docbook and the docbook-to-pdf steps
in one.

xdoc-to-xhtml.xpl Convenience pipeline: Combines the xdoc-to-docbook and the docbook-to-xhtml

steps in one.

Table 4-1 - Module overview

XProc (3.0) pipeline: docbook-to-pdf.xpl

File: xp13/docbook-to-pdf.xpl

Type: xdoc : docbook-to-pdf

This turns Docbook (5.1) into a PDF using FOP.

All necessary xdoc pre-processing (usually with xdoc-to-docbook.xpl) must have been done.

It will only convert a partial DocBook tagset.

If you don't use xdoc-to-docbook.xpl, you have to make sure to get correct xml : base attributes in, so the
pipeline can find includes and images. The following XProc (1.0) code takes care of that:

<p:xinclude>
<p:with-option name="fixup-xml-base" select="true()"/>
</p:xinclude>
<p:add-attribute attribute-name="xml:base" match="/*">
<p:with-option name="attribute-value" select="/reference/to/source/document.xml"/>
</p:add-attribute>

Description

source in yes The Docbook soutce document, fully expanded (with appropriate xm1 :base
attributes)
result out yes A small report thingie

Rq? Default

chapter-id xs:string v Specific chapter identifier to
output.
create-pdf xs:boolean true () Whether to actually create the
PDE
fop-config xs:string resolve-uri('../../ Reference to the FOP
xtpxlib-common/ configuration file

data/fop-default-
config.xml', static-
base-uri())

global-resources- xs:string? 0 Images that are tagged
directory as role="global" are
searched here (discarding any
directory information in the
image's URI)

href-pdf xs:string yes The name of the resulting
PDF file, as a URI (an
absolute path must have
file:// in front).

href-xsl-fo xs:string? () If set, writes the intermediate
XSL-FO to this href (so you
can inspect it when things go
wrong in FOP)




4.2

4.3

4.4

xtpxlib-xdoc - An xtpxlib component for generating documentation 14 /26

Rq? Default Description

main-font-size xs:integer 10 Main font size as an integer.
Usual values somewhere
between 8 and 10.

output-type xs:string tad! Output type. Use either a4 or
sb (= standard book size)

preliminary-version xs:boolean false () If true, adds a preliminary
version marker and output
any db: remark elements. If
false, output of db:remark
clements will be suppressed.

XProc (3.0) pipeline: docbook-to-xhtml.xpl

File: xp13/docbook-to-xhtml.xpl

Type: xdoc:docbook-to-xhtml

This turns Docbook (5.1) into XHTML.

All necessary xdoc pre-processing (usually with xdoc-to-docbook.xpl) must have been done.
It will only convert a partial DocBook tagset.

The resulting XHTML will not be directly useable, post-processing the result into a complete and correct

HTML page is necessary. The result of this pipeline consists of nested div elements. There is no surrounding
html or body element.

Type Description
source in yes The docbook soutce document.
result out yes The resulting XHTML

Rg? Default  Description

add-identifiers xs:boolean true() |Add identifiers to elements when no @xml:id is
present.

add-numbering xs:boolean true () |Add numbering to sections, tables, examples, etc.

add-roles-as-classes xs:boolean true () |Add any roles as classes to the end result.

create-header xs:boolean true () |Create some header construct

XProc (3.0) pipeline: xdoc-to-docbook.xpl

File: xp13/xdoc-to-docbook.xpl
Type: xdoc: xdoc-to-docbook

XProc 3.0 pipeline that transforms a DocBook soutce containing xdoc extensions into "pure" DocBook
format.

source in yes The DocBook source with xdoc extensions

result out yes The resulting DocBook.

Rq? Default Description

alttarget xs:string? O The target for applying alternate

settings.
href-parameters xs:string? () Optional reference to a document
with parameter settings. See here for
details.
parameter-filters-map |map(xs:string, map{} |Optional filter settings for
xs:string) processing the parameters.

XProc (3.0) pipeline: xdoc-to-pdf.xpl

File: xp13/xdoc-to-pdf.xpl
Type: xdoc: xdoc-to-pdf

Convenience pipeline: Combines the xdoc-to-docbook and the docbook-to-pdf steps in one.


https://common.xtpxlib.org/1_Description.html#parameters-explanation

xtpxlib-xdoc - An xtpxlib component for generating documentation

15/26

Type |Primary?

source mn yes

Description

The Docbook source, with option al xdoc extensions.

result out yes

A small report thingie

alttarget

xs:string?

Rqg? Default

Description

The target
for applying
alternate
settings.

chapter-id

xs:string

Specific
chapter
identifier to
output.

create-pdf

xs:boolean

true ()

Whether to
actually create
the PDE.

fop-config

xs:string

resolve-uri('../../
xtpxlib-common/
data/fop-default-
config.xml', static-
base-uri())

Reference

to the FOP
configuration
file

global-resources-
directory

xs:string?

0

Images that

are tagged as
role="global
are searched
here

(discarding

any directory
information

in the image's

URI)

href-docbook

xs:string?

If set,

writes the
intermediate
full DocBook
to this href

(so you can
inspect it when
things go
wrong)

href-parameters

xs:string?

Optional
reference to

a document
with parameter
settings.

See here for
details.

href-pdf

xs:string

yes

The name of
the resulting
PDF file, as
a URI (an
absolute path
must have
file://in
front).



https://common.xtpxlib.org/1_Description.html#parameters-explanation

4.5

xtpxlib-xdoc - An xtpxlib component for generating documentation

16/26

href-xsl-fo

xs:string?

Rq? Default

Description
If set,

writes the
intermediate
XSL-FO

to this href
(so you can
inspect it
when things
go wrong in

FOP)

main-font-size

xs:integer

10

Main font size
as an integef.
Usual values
somewhere
between 8 and
10.

output-type

xs:string

Output type.
Use either

ad orsb (=
standard book
size)

parameter-filters-map

map (xs:string,
xs:string)

map{}

Optional filter
settings for
processing the
parameters.

preliminary-version

xs:boolean

false ()

If true, adds
a preliminary
version marker
and output any
db:remark
elements.

If false,
output of
db:remark
elements will

be suppressed.

XProc (3.0) pipeline: xdoc-to-xhtml.xpl

File: xp13/xdoc-to-xhtml.xpl

Type: xdoc: xdoc-to-xhtml

Convenience pipeline: Combines the xdoc-to-docbook and the docbook-to-xhtml steps in one.

Description

source in yes

result out yes

The Docbook source, with option al xdoc extensions.

The resulting XHTML.

Rq? Default

Description

add-identifiers xs:boolean true () Add identifiers to elements when no
@xml:id is present.

add-numbering xs:boolean true () Add numbering to sections, tables,
examples, etc.

add-roles-as-classes xs:boolean true () Add any roles as classes to the end
result.

alttarget xs:string? () The target for applying alternate
settings.

create-header xsS:boolean true () Create some header construct

href-docbook xs:string? () If set, writes the intermediate full
DocBook to this href (so you can
inspect it when things go wrong)




4.6

4.6.1

xtpxlib-xdoc - An xtpxlib component for generating documentation 17 /26

Rq? Default |Description

href-parameters xs:string? () Optional reference to a document
with parameter settings. See here for
details.
parameter-filters-map |map(xs:string, map{} Optional filter settings for
xs:string) processing the parameters.

Module/Pipeline Description

xtpxlib-xdoc.mod.xpl Library with support pipelines for xdoc and related conversions.

Table 4-12 - Module overview

XProc (3.0) library: xtpxlib-xdoc.mod.xpl

File: xp13mod/xtpxlib-xdoc.mod/xtpxlib-xdoc.mod.xpl

Library with support pipelines for xdoc and related conversions.

‘Nnmespace URI

xdoc http://www.xtpxlib.nl/ns/xdoc

Step: xdoc:markdown-to-docbook

Converts the contents of xdoc : MARKDOWN elements into DocBook.

This pipeline checks the incoming XML for xdoc : MARKDOWN elements. The contents of these elements
is assumed to contain Markdown. The pipeline tries to convert this into DocBook. The xdoc : MARKDOWN
element is removed/unwrapped.

The following rules apply:
*  The contents of an xdoc : MARKDOWN element is stringified (so any child elements are lost).

*  The resulting text can be indented, using space characters only (no tabsl). The non-empty line with the
minimur indent is assumed to be its left margin.

*  Only simple Markdown is supported. Specifically:
*  Inline markup for emphasis, bold, code, etc.

* Links. A link target starting with a % is handled as an infernallink (the @xml : id of something in the
encompassing DocBook).

*  Code blocks (using three consecutive back-ticks)

*  Headers (these ate all converted into the same DocBook bridgehead elements)
*  Specifically not supported (yet?) are tables.
If you add an header-only="true" attribute to the xdoc : MARKDOWN element, only the first paragraph
will be output.

‘T}'pc ‘Primary? ‘Dcscription

source in yes Any XML that might contain xdoc : MARKDOWN elements for conversion.

result out yes The same XML but with the xdoc : MARKDOWN element's contents converted into
DocBook.



https://common.xtpxlib.org/1_Description.html#parameters-explanation

5.1

xtpxlib-xdoc - An xtpxlib component for generating documentation 18 /26

XProc 1.0 support

WARNING: XProc 1.0 support is considered deprecated and will be removed in the near future!

The xtpxlib-xdoc component contains the following XProc 1.0 pipelines:

Module/Pipeline Description

docbook-to-pdf.xpl This turns Docbook (5.1) into a PDF using FOP.
docbook-to-xhtml.xpl  |This turns Docbook (5.1) into XHTML.

xdoc-to-docbook.xpl Pipeline that transforms a DocBook soutce containing xdoc extensions into "pure"
DocBook format.

xdoc-to-pdf.xpl Convenience pipeline: Combines the xdoc-to-docbook and the docbook-to-pdf steps
in one.
xdoc-to-xhtml.xpl Convenience pipeline: Combines the xdoc-to-docbook and the docbook-to-xhtml

steps in one.

Table 5-1 - Module overview

XProc (1.0) pipeline: docbook-to-pdf.xpl

File: xpl/docbook-to-pdf.xpl

Type: xdoc:docbook-to-pdf

This turns Docbook (5.1) into a PDF using FOP.

All necessary xdoc pre-processing (usually with xdoc-to-docbook.xpl) must have been done.

It will only convert a partial DocBook tagset.

If you don't use xdoc-to-docbook.xpl, you have to make sure to get correct xml :base attributes in, so the
pipeline can find includes and images. The following XProc (1.0) code takes care of that:

<p:xinclude>
<p:with-option name="fixup-xml-base" select="true()"/>
</p:xinclude>
<p:add-attribute attribute-name="xml:base" match="/*">
<p:with-option name="attribute-value" select="/reference/to/source/document.xml"/>
</p:add-attribute>

Primary? |Description

source in yes The docbook source document, fully expanded (with appropriate xml :base
attributes)
result out yes The resulting XSL-FO (that was transformed into the PDF).
Rqg? Default Description
chapter-id v Specific chapter identifier to output.
create-pdf true () Whether to actually create the PDFE. If false, it
will only output the XSL-FO
fop-config resolve-uri('../../ Reference to the FOP configuration file

xtpxlib-common/
data/fop-default-
config.xml', static-
base-uri())

global-resources- 0 Images that are tagged as role="global"
directory are searched here (discarding any directory
information in the image's URT)

href-pdf yes The name of the resulting PDF file (must have
file:// in front).

href-xsl-fo () If set, writes the intermediate XSL-FO to this
href (so you can inspect it when things go
wrong in FOP)

main-font-size 10 Main font size as an integer. Usual values
somewhere between 8 and 10.




5.2

5.3

5.4

xtpxlib-xdoc - An xtpxlib component for generating documentation 19/26

Rgr Default Description
output-type ‘a4’ Output type. Use either a4 or sb (= standard
book size)
preliminary-version false () If true, adds a preliminary version marker

and output any db: remark elements. If
false, output of db: remark elements will be
suppressed.

XProc (1.0) pipeline: dochook-to-xhtml.xpl

File: xpl/docbook-to-xhtml.xpl

Type: xdoc:docbook-to-xhtml

This turns Docbook (5.1) into XHTML.

All necessary xdoc pre-processing (usually with xdoc-to-docbook.xpl) must have been done.
It will only convert a partial DocBook tagset.

The resulting XHTML will not be directly useable, post-processing the result into a complete and correct
HTML page is necessary. The result of this pipeline consists of nested div elements. There is no surrounding
html or body element.

Primary? |Description

source in yes The docbook source document.

‘result out yes ‘The resulting XHTML

XProc (1.0) pipeline: xdoc-to-docbook.xpl

File: xpl/xdoc-to-docbook.xpl
Type: xdoc: xdoc-to-docbook

Pipeline that transforms a DocBook soutce containing xdoc extensions into "pure" DocBook format.

Primary? |Description

source in yes The DocBook source with xdoc extensions

result out yes The resulting DocBook

Rq? ‘ Default  Description

alttarget O The target for applying alternate settings.

href-parameters O Optional reference to a document with parameter settings. See here for
details.

parameter-filters 0 Optional filter settings for processing the parameters. Format:
name=value |name=value]...

XProc (1.0) pipeline: xdoc-to-pdf.xpl
File: xpl/xdoc-to-pdf.xpl
Type: xdoc: xdoc-to-pdf

Convenience pipeline: Combines the xdoc-to-docbook and the docbook-to-pdf steps in one.

‘Typc ‘Primary? Description

source in yes The DocBook source with xdoc extensions
result out yes Some XML report about the conversion

Rqg? Default Description
alttarget 0 The target for applying alternate settings.
chapter-id v Specific chapter identifier to output.
fop-config resolve-uri('../../ Reference to the FOP configuration file

xtpxlib-common/
data/fop-default-
config.xml', static-
base-uri())



https://common.xtpxlib.org/1_Description.html#parameters-explanation

5.5

5.6

5.6.1

xtpxlib-xdoc - An xtpxlib component for generating documentation

20/26

Rqg? Default

global-resources- ()
directory

Description

Images that are tagged as role="global"
are searched here (discarding any directory
information in the image's URT)

href-docbook ()

If set, writes the intermediate full DocBook to
this href (so you can inspect it when things go
wrong)

href-parameters ()

Optional reference to a document with
parameter settings. See here for details.

href-pdf yes

The name of the resulting PDF file

href-xsl-fo ()

If set, writes the intermediate XSL-FO to this

href (so you can inspect it when things go
wrong in FOP)

main-font-size 10 Main font size as an integer. Usual values

somewhere between 8 and 10.

Output type. Use either a4 or sb (= standard
book size)

output-type 'ad’

parameter-filters () Optional filter settings for processing
the parameters. Format: name=value |

name=value]...

preliminary-version false() If true, adds a preliminary version marker
and output any db: remark elements. If
false, output of db:remark elements will be

suppressed.

XProc (1.0) pipeline: xdoc-to-xhtml.xpl

File: xpl/xdoc-to-xhtml.xpl
Type: xdoc: xdoc-to-xhtml

Convenience pipeline: Combines the xdoc-to-docbook and the docbook-to-xhtml steps in one.

Primary?  |Description

The DocBook source with xdoc extensions
The resulting XHTML

source in yes

result out yes

Default  Description

alttarget O The target for applying alternate settings.

Optional reference to a document with parameter settings. See here for
details.

href-parameters ()

parameter-filters O Optional filter settings for processing the parameters. Format:

name=value|name=value]...

Module/Pipeline

Description

xtpxlib-xdoc.mod.xpl  |Library with support pipelines for xdoc and related conversions.

Table 5-11 - Module overview

XProc (1.0) library: xtpxlib-xdoc.mod.xpl

File: xplmod/xtpxlib-xdoc.mod/xtpxlib-xdoc.mod.xpl

Library with support pipelines for xdoc and related conversions.

‘Namcspacc URI

xdoc http://www.xtpxlib.nl/ns/xdoc

Step: xdoc:markdown-to-docbook

Converts the contents of xdoc : MARKDOWN elements into DocBook.

This pipeline checks the incoming XML for xdoc : MARKDOWN elements. The contents of these elements
is assumed to contain Markdown. The pipeline tries to convert this into DocBook. The xdoc : MARKDOWN
element is removed/unwrapped.


https://common.xtpxlib.org/1_Description.html#parameters-explanation
https://common.xtpxlib.org/1_Description.html#parameters-explanation

xtpxlib-xdoc - An xtpxlib component for generating documentation 21/26

The following rules apply:
*  The contents of an xdoc : MARKDOWN element is stringified (so any child elements are lost).

*  The resulting text can be indented, using space characters only (no tabs!). The non-empty line with the
minimum indent is assumed to be its left margin.

*  Only simple Markdown is supported. Specifically:
* Inline markup for emphasis, bold, code, etc.

* Links. A link target starting with a % is handled as an snfernallink (the @xml : id of something in the
encompassing DocBook).

*  Code blocks (using three consecutive back-ticks)
*  Headers (these are all converted into the same DocBook bridgehead elements)
*  Specifically not supported (yet?) are tables.

If you add an header-only="true" attribute to the xdoc : MARKDOWN element, only the first paragraph
will be output.

‘Typc ‘ Primary? ‘ Description

source in yes Any XML that might contain xdoc : MARKDOWN elements for conversion.

result out yes The same XML but with the xdoc : MARKDOWN element's contents converted into
DocBook.




6.1

6.2

6.3

6.4

xtpxlib-xdoc - An xtpxlib component for generating documentation 22 /26

DocBook dialect

The xtpxlib-xdoc component uses DocBook 5.1 as its source and target vocabulary. However, for
generating ontput (see the docbook-to-pdf and docbook-to-xhtml pipelines) it does not implement the
full standard (which is huge!l) but only those elements/attributes that were deemed necessary. This document
will explain what is in and what's not.

Supported root elements

Both the <book> and the <article> root element are supported.

For docbook-to-pdf conversion: A <book> root results in a book-like output (with a front page, ToC,
etc.). The <article> root results in something more memo style.

Document information

Document information: The only document information elements recognized are (any others are ignored):

<info>
<title> ... main title ... </title>
<subtitle> ... subtitle ...</subtitle>
<pubdate> ... publication date ... </pubdate>
<author>

<personname> ... author name ...</personname>

</author>
<orgname> ... organization ... </orgname>

<mediaobject role="top-logo">

<!-- Use either role="top-logo" or no role attribute. -->
<imageobject>
<imagedata fileref="..." width="... (opt)" height="... (opt)"/>

</imageobject>
</mediaobject>

<mediaobject role="center-page'">
<imageobject>
<imagedata fileref="..." width="... (opt)" height="... (opt)"/>
</imageobject>
</mediaobject>

</info>

All elements are optional.

Chapter/Section structure

*  For books, <preface>, <chapter>, <appendix> and <sectl> to <sect 9> are recognized and
handled. Anything above <sect3> will not be numbered.

* Inarticles only <sectl> to <sect9> are allowed.

Block constructions

the following block level constructions are recognized and handled:

*  Paragraphs: Normal <para> elements recognize the following role attribute values (multiple,
whitespace separated, values allowed):

@role value

break, smallbreak Inserts an empty line, either full or small height. The contents of the
<para> element is ignored.

break-before Adds extra whitespace before or after the paragraph

break-after

header Keeps this paragraph with the next one together on a page.

keep-with-next



https://docbook.org/

xtpxlib-xdoc - An xtpxlib component for generating documentation 23/26

@role value Description
keep-with-previous Keeps this paragraph with the previous one together on a page.
Table 6-1

e Lists: Both <itemizedlist> and <orderedlist> are allowed.
e Tables: Both <table>and <informaltable> are allowed. An example of a formal table above. An
informal table below.

Example of

an informal table

Add role="nonumber" to a table to stop it from getting a number:

Example of
an unnumbered table
An <entrytbl> 1 2
3
Unnumbered table

A table can have multiple <tgroup> elements.
You can add a nested table in a cell using the <entrytbl> element (currently for PDF only).
<spanspec> elements are ignored.

Tables are notoriously difficult in that FOP cannot compute column widths automatically. To amand this
(a little bit) add colspec/@colwidth information. There is also a mechanism for columns with code
(setin a fixed-width font), see “Fixed-width column mechanism” on page 26.

*  Program listings: For program listings use the <programlisting> element

The easiest way to handle this turned out to put longer program listings in external files and use an
<xi:include parse="text"> construction:

<programlisting><xi:include href="ref" parse="text"/></programlisting>
Or use a <! [CDATA [ construction around the piece of code.

*  For PDF generation it is possible to use so-called callouts to draw attention to parts of a program listing.
These callouts can become links (both ways) using the right markup. For example:

xquery version "3.0" encoding "UTF-8";
module namespace x10llog = "http://www.exist-db.org/book/namespaces/existl101";
declare function x10llog:add-log-message (Smessage as xs:string)

as empty-sequence ()

}i
The module namespace definition at the top defines ...

We declare a function that returns empty-sequence () 2.

* Figures: Both <figure> and <informalfigure> are allowed. Width and height can be set on the
image data.

XATAPULT

CONTENT ENGINEERING

Figure 6-1 - An example of a fignre... (this in fixed width)

Add role="nonumber" to a <figure> to stop it from getting a number.

In running the conversion pipelines, you can specify (as an option) a special "global" directory that
contains global images (and other resources). When an image is located in this global directory add a
role="global" to the <figure> element. Any directory information in @fileref is ignored.



6.5

xtpxlib-xdoc - An xtpxlib component for generating documentation 24 /26

*  Bridgeheads: The <bridgehead> element inserts a bridgehead paragraph (bold, underlined and with
an empty line before):

This is a bridgehead...

*  Simple lists: The <simplelist> element inserts a simple list:

An entry
Another entry...

*  Variable lists: The <variablelist> element inserts a variable list list (also very useful for explaining
terms, definitons, etc.):

The first entry
The explanation of the first entry!

The second entry
The explanation of the second entry!

* Notes, warnings & cautions:

NOTE:
This is a note! ... (<note>)

WARNING:

This is a warning! ... (kwarning>)

CAUTION:
This is a caution! ... (<caution>)

If you add a <title> element, the standard title will be replaced by its contents.
* Sidebars & tips:

Title of the sidebar
Contents of the sidebar. ... (<sidebar>)

Title of the tip
Contents of the tip. ... (<tip>)

* Examples: The <example> element inserts an example:
Lorem ipsum dolor sit amet, consectetur adipiscing elit. ...
Example 6-1 - Example of an example

Add role="nonumber" to an example to stop it from getting a number.

* Block quotes:

Example of a <blockquote> element's output...

Inline elements

the following inline elements are recognized and handled:
* <emphasis>: Sets emphasis.

Use role="bold" or role="underline" to set a specific type of emphasis.

* <literal> or <code>: Creates a piece of literal, mono-spaced text.

Lot's of other elements that have to do with programming (like <function>> and <varname>) have
the same effect.

*  <1link>: Outputs some link (e.g. a web address). Use one of:
e @xlink:href for an external web address.
e @linkend for an internal id.

The visible contents will consist of either the contents of the <1ink> element or (if empty) the contents
of @xlink:href ot @linkend. Like this or like this http://www.xatapult.nl.

For HTML, add role="newpage" to get a new page/tab when clicking on the link.


http://www.xatapult.nl
http://www.xatapult.nl

xtpxlib-xdoc - An xtpxlib component for generating documentation 25/26

<inlinemediaobject>: Inserts an inline image ¢, like this.

In running the conversion pipelines, you can specify (as an option) a special "global" directory that
contains global images (and other resources). When an image is located in this global directory add a
role="global" to the <inlinemediaobject> element. Any directory information in @fileref is
ignored.

* <citation>: Inserts a citation between square brackets like this: [CITATION].

* <command>: Use to indicate an exetuble program or a user provided command, like this: gi# checkout origin
* <email>: Use to indicate an an email addtess, like this: nfo@xatapuit.con

* <filename>: Use to indicate an a filename, like this: blabla.xm!

* <replaceable>: Use to indicate text to be replaced with user or context supplied values, like this: add
your own stuff here

* <keycap>: Use to indicate a keyboard physical key, like this:

<superscript>, <subcript>: For supet- and subsctipts, like this: XX YY

* <userinput>: Use to indicate data entered by the user, like this: data entered here
* <quote>: Use for adding a quote: “To be or not to be...”.

* <tag>: Indicates an object from the XML vocabulary. The class attribute signifies what:

@class value

REIFSETEE)

attribute @attribute
@class
attvalue "attribute value"
"some value for an attribute"
emptytag <element/>
<docbook/>
endtag </element>
</docbook>
pi <?processing-instruction x="y"?>
comment <!-- Some comment line... -->
Anything else defaults to <element>
element <docbook>
Table 6-3

For HTML, add role="newpage" to get a new page/tab when clicking on the link.
e <xref>: Inserts a cross-reference to the id referenced by @1linkend

* Use role="page-number-only" to get just a page number.

* Userole="simple" to always get: page #

e Use role="text" to only get the (unquoted) text only in cases where a "..." on page ... would
normally appear.

* Userole="capitalize" to force the reference string (for chapters/appendices/pages/figures/
tables/...) to start with an uppet-case character (so you can be sure a sentence that starts with an
<xref> always starts with a capital).

Otherwise it depends on what is pointed to:

Target
To anything that holds an
xreflabel attribute

Result/Examples

“paragraph with xreflabel attribute” on page 22

To a chapter or appendix

chapter # or appendix #

To a section

“Document information” on page 22

To a table (with a table 6-4
number), like this one
To a figure (with a figure 6-1

number)

To an example (with a
number)

example 6-1



mailto:info@xatapult.com

6.6

6.7

xtpxlib-xdoc - An xtpxlib component for generating documentation 26/26

Target Result/Examples

To anything else First paragraph: page 22
Unnumbered table: page 23

Table 64 - Examples of <xref> usage
* <footnote> Adds a footnote!

*  There are lots of elements that are ignored. For instance all the <gui..> elements, <orgname> and many
more (but the list is not (yet) DocBook complete).

Other constructs

* To-be-done marker: Start a to-be-done marker with [TBD and end it with ]. For instance: [TBD this
needs to be done...]

Fixed-width column mechanism

FOP (in the current version, 3Q19) cannot compute the column-widths automatically. It divides the space
and you can set a fixed column-width (with colspec/@colwidth). For the case that a column contains
code stuff (text in a fixed-width font) and you want the column-width to be dependent on the text in such a
column, there is a (unfortunately a bit complicated) mechanism for this.

The fixed-width column mechanism consists of two parts:

Dynamically compute the column width
This part is optional.
Add a role attribute to the <colspec> element with, as one of the roles, code-width-cm:min-
max, where min and max are (positive) doubles. For instance <colspec role="code-width-
cm:1.2-4"> min and max are the minimum and maximum column-widths, expressed in cm.
The PDF conversion will now look in all the contents of this particular column for entries <code
role="code-width-1limited">. Based on the length of these entries it computes an optimal
column-width, but always between min and max.

Output code width-limited
If a table entry contains contents in a <code role="code-width-limited"> element, it tries to
make it fit within the available column-width. If necessary the line is split to prevent overflowing of
table cell contents.

This is (currently) not completely fool-proof: if the contents contains whitespace or hyphens, it is
assumed to line-break correctly by itself. That, of course, does not guarantee correct results. So it
may need a little experimenting before things look right.

A column that contains <code role="code-width-limited"> contents st have a column
width set 7 em (either directly with <colspec colwidth="..cm"> or by the dynamic mechanism
described above).

1.  This is a footnote's text!



